Self-similarity Analysis for Motion Capture Cleaning
https://vimeo.com/262522859
Author
Abstract
Motion capture sequences may contain erroneous data, especially when the motion is complex or performers are interacting closely and occlusions are frequent. Common practice is to have specialists visually detect the abnormalities and fix them manually. In this paper, we present a method to automatically analyze and fix motion capture sequences by using self-similarity analysis. The premise of this work is that human motion data has a high-degree of self-similarity. Therefore, given enough motion data, erroneous motions are distinct when compared to other motions. We utilize motion-words that consist of short sequences of transformations of groups of joints around a given motion frame. We search for the K-nearest neighbors (KNN) set of each word using dynamic time warping and use it to detect and fix erroneous motions automatically. We demonstrate the effectiveness of our method in various examples, and evaluate by comparing to alternative methods and to manual cleaning.
Source
Andreas Aristidou, Daniel Cohen-Or, Jessica K. Hodgins, Yiorgos Chrysanthou and Ariel Shamir, Deep motifs and motion signatures, ACM Transactions on Graphics, 10.1145/3272127.3275038, 37, 6, (1-13), (2018).
Comments
モーションキャプチャデータには多くのエラーが含まれる
修正が必要
既存手法は
ダンサー1人向け
短いオクルージョン向け
外れ値は対処できない
なので未だにマニュアルで修正してる
関連研究
モーション検索
モーションマーカー自動補正
data-driven 補正
モーション再構成
エラー検出手法
モーションの修正と再構成を同時にできる
15frameを5frame間隔で引っ張ってきて、1frame間隔で20frameにDTWをかける
で,K-NNで上から5つ似ているの動作をとってきていて、その平均をとる。
URL
capture Motion processing
Tag